问题 解答题
已知函数f(x)=ax+lnx,a∈R.
(I)当a=-1时,求f(x)的最大值;
(II)对f(x)图象上的任意不同两点P1(x1,x2),P(x2,y2)(0<x1<x2),证明f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平等;
(III)当a=
3
2
时,设正项数列{an}满足:an+1=f'(an)(n∈N*),若数列{a2n}是递减数列,求a1的取值范围.
答案

(Ⅰ)当a=-1时,f(x)=-x+lnx,f′(x)=-1+

1
x
=
-x +1
x

对于x∈(0,1),有f'(x)>0,∴f(x)在区间(0,1]上为增函数,

对于x∈(1,+∞),有f'(x)<0,∴f(x)在区间(1,+∞)上为减函数,.

∴fmax(x)=f(1)=-1;

(II)直线P1P2的斜率为 k=

ax2+lnx2-ax1-lnx1
x2-x1
=a+
lnx2-lnx1
x2-x1

由(1)知-x+lnx≤-1,当且仅当x=1时取等号,

-

x2
x1
+ln
x2
x1
<-1⇒ln
x2
x1
x2
x1
-1⇒lnx2-lnx1
x2-x1
x1
lnx2-lnx1
x2-x1
1
x1

同理,由 -

x1
x2
+ln
x1
x2
<-1,可得
lnx2-lnx1
x2-x1
1
x2

故P1P2的斜率 k∈(a+

1
x2
,a+
1
x1
),

又在x∈(x1,x2)上,f(x)=a+

1
x
∈(a+
1
x2
,a+
1
x1
),

所以f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平行;

(III)f(x)=

3
2
x+lnx,f′(x)=
3
2
+
1
x
,∴an+1=
3
2
+
1
an

a3=

3
2
+
1
a2
,a4=
3
2
+
1
a3
=
3
2
+
1
3
2
+
1
a2
=
13a2+6
2(3a2+2)
<a2⇒2a22-3a2-2>0,

⇒(2a2+1)(a2-1)>0⇒a2>2⇒

3
2
+
1
a1
>2⇒0<a1<2,

下面我们证明:当0<a1<2时,a2n+2<a2n,且a2n>2(n∈N+

事实上,当n=1时,0<a1<2⇒a2=

3
2
+
1
a1
>2,

a4-a2=

13a2+6
2(3a2+2)
-a2=-
3(2a2+1)(a2-2)
2(3a2+2)
<0⇒a4<a2,结论成立.

若当n=k时结论成立,即a2k+2<a2k,且a2k>2,则

a2k+2=

3
2
+
1
a2k
>2⇒a2k+4=
3
2
+
1
a2k+2
>2

a2k+4-a2k+2=

13a2k+2+6
2(3a2k+2+2)
-a2k+2=-
3(2a2k+2+1)(a2k+2-2)
2(3a2k+2+2)
<0

⇒a2k+4<a2k+2

由上述证明可知,a1的取值范围是(0,2).

多项选择题
单项选择题