问题 计算题

如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。在x轴上方空间的第一、第二象限内,既无电场也无磁场,在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的匀强磁场,在第四象限,存在沿y轴负方向、场强大小与第三象限电场场强相等的匀强电场。一质量为m、电量为q的带电质点,从y轴上y = h处的P1点以一定的水平初速度沿x轴负方向进入第二象限。然后经过x轴上x = – 2h处的P2点进入第三象限,带电质点恰好能做匀速圆周运动。之后经过y轴上y = – 2h处的P3点进入第四象限。已知重力加速度为g。求:

(1)带电质点到达P2点时速度的大小和方向;

(2)第三象限空间中电场强度和磁感应强度的大小;

(3)带电质点在第四象限空间运动过程中最小速度的大小和方向。

答案

解:(1)质点从P1到P2,由平抛运动规律

h=,v0=,vy=gt

求出v =,方向与x轴负方向成45°角 

(2)质点从P2到P3,重力与电场力平衡,洛仑兹力提供向心力

Eq=mg

Bqv=m

(2R)2=(2h)2+(2h)2

E=,B=

(3)质点进入第四象限,水平方向做匀速直线运动,竖直方向做匀减速直线运动。当竖直方向的速度减小到0,此时质点速度最小,即v在水平方向的分量

vmin=vcos45°=,方向沿x 轴正方向

填空题
单项选择题