问题 解答题
已知函数f(x)=ex-x(e为自然对数的底数).
(1)求函数f(x)的最小值;
(2)若n∈N*,证明:(
1
n
)n+(
2
n
)n+…+(
n-1
n
)n+(
n
n
)n
e
e-1
答案

(1)∵f(x)=ex-x,∴f'(x)=ex-1,令f'(x)=0,得x=0.

∴当x>0时,f'(x)>0,当x<0时,f'(x)<0.∴函数f(x)=ex-x在区间(-∞,0)上单调递减,

在区间(0,+∞)上单调递增.∴当x=0时,f(x)有最小值1.

(2)证明:由(1)知,对任意实数x均有ex-x≥1,即1+x≤ex.令x=-

k
n
(n∈N*,k=1,2,,n-1),

0<1-

k
n
e-
k
n
,∴(1-
k
n
)n≤(e
k
n
)n=e-k(k=1,2,,n-1)

(

n-k
n
)ne-k(k=1,2,,n-1).∵(
n
n
)n=1

(

1
n
)n+(
2
n
)
n
+…+(
n-1
n
)
n
+(
n
n
)
n
e-(n-1)+e-(n-2)+… .+e-2+e-1+1.

e-(n-1)+e-(n-2)+…+e-2+e-1+1=

1-e-n
1-e-1
1
1-e-1
=
e
e-1

(

1
n
)n+(
2
n
)
n
+…+(
n-1
n
)
n
+(
n
n
)
n
e
e-1

选择题
单项选择题