问题
解答题
已知函数f(x)=ex-x(e为自然对数的底数). (1)求函数f(x)的最小值; (2)若n∈N*,证明:(
|
答案
(1)∵f(x)=ex-x,∴f'(x)=ex-1,令f'(x)=0,得x=0.
∴当x>0时,f'(x)>0,当x<0时,f'(x)<0.∴函数f(x)=ex-x在区间(-∞,0)上单调递减,
在区间(0,+∞)上单调递增.∴当x=0时,f(x)有最小值1.
(2)证明:由(1)知,对任意实数x均有ex-x≥1,即1+x≤ex.令x=-
(n∈N*,k=1,2,,n-1),k n
则 0<1-
≤e-k n
,∴(1-k n
)n≤(e- k n
)n=e-k(k=1,2,,n-1).k n
即(
)n≤e-k(k=1,2,,n-1).∵(n-k n
)n=1,n n
∴(
)n+(1 n
)n+…+(2 n
)n+(n-1 n
)n≤e-(n-1)+e-(n-2)+… .+e-2+e-1+1.n n
∵e-(n-1)+e-(n-2)+…+e-2+e-1+1=
<1-e-n 1-e-1
=1 1-e-1
,e e-1
∴(
)n+(1 n
)n+…+(2 n
)n+(n-1 n
)n<n n
.e e-1