已知函数f(x)=a•ex+
(Ⅰ)当a=1时,求f(x)在点(1,f(1))处的切线方程; (Ⅱ)若对于任意的x∈(0,+∞),恒有f(x)≥0成立,求a的取值范围. |
(Ⅰ)当a=1时,f(x)=ex+
-4,∴f′(x)=ex-2 x
,∴f′(1)=e-2,2 x2
∵f(1)=e-2,
∴f(x)在点(1,f(1))处的切线方程为:(e-2)x-y=0.
(Ⅱ)∵f(x)=a•ex+
-2(a+1)(a>0).a+1 x
∴f′(x)=
,ax2ex-(a+1) x2
令g(x)=ax2ex-(a+1),则g′(x)=ax(2+x)ex>0,
∴g(x)在(0,+∞)上单调递增,
∵g(0)=-(a+1)<0,当x→+∞时,g(x)>0,
∴存在x0∈(0,+∞),使g(x0)=0,且f(x)在(0,x0)上单调递减,f(x)在(x0,+∞)上单调递增,
∵g(x0)=ax02ex0-(a+1)=0,∴ax02ex0=a+1,即aex0=
,a+1 x02
∵对于任意的x∈(0,+∞),恒有f(x)≥0成立,
∴f(x)min=f(x0)=aex0+
-2(a+1)≥0,∴a+1 x0
+a+1 x02
-2(a+1)≥0,a+1 x0
∴
+1 x02
-2≥0,∴2x02-x0-1≤0,解得-1 x0
≤x0≤1,1 2
∵ax02ex0=a+1,∴x02ex0=
>1,a+1 a
令h(x0)=x02ex0,而h(0)=0,当x0→+∞时,h(x0)→+∞,
∴存在m∈(0,+∞),使h(m)=1,
∵h(x0)=x02ex0在(0,+∞)上,∴x0>m,
∴m<x0≤1,
∵h(x0)=x02ex0在(m,1]上∴h(m)<h(x0)≤h(1),
∴1<
≤e,∴a≥a+1 a
.1 e-1