(Ⅰ)已知函数f(x)=lnx-x+1,x∈(0,+∞),求函数f(x)的最大值; (Ⅱ)设a1,b1(k=1,2…,n)均为正数,证明: (1)若a1b1+a2b2+…anbn≤b1+b2+…bn,则a1b1a2b2…anbn≤1; (2)若b1+b2+…bn=1,则
|
(I)f(x)的定义域为(0,+∞),
令f′(x)=
-1=0,解得x=1,1 x
当0<x<1时,f′(x)>0,所以f(x)在(0,1)上是增函数;
当x>1时,f′(x)<0,所以f(x)在(1,+∞)上是减函数;
故函数f(x)在x=1处取得最大值f(1)=0;
(II)(1)由(I)知,当x∈(0,+∞)时,有f(x)≤f(1)=0,即lnx≤x-1,
∵ak,bk(k=1,2…,n)均为正数,从而有lnak≤ak-1,
得bklnak≤akbk-bk(k=1,2…,n),
求和得
+ln b1a1
+ln b2a2
+…+ln b3a3
≤a1b1+a2b2+…+anbn-(b1+b2+…+bn)ln bnan
∵a1b1+a2b2+…anbn≤b1+b2+…bn,
∴
+ln b1a1
+ln b2a2
+…+ln b3a3
≤0,即ln(a1b1a2b2… anbn)≤0,ln bnan
∴a1b1a2b2…anbn≤1;
(2)先证
≤b1b1b2b2…bnbn,1 n
令ak=
(k=1,2…,n),则a1b1+a2b2+…+anbn=1=b1+b2+…bn,1 nbk
于是由(1)得(
)b1(1 nb1
)b2…(1 nb2
)bn≤1,即1 nbn
≤nb1+b2+…bn=n,1 b1b1b2b2…bnbn
∴
≤b1b1b2b2…bnbn,1 n
②再证b1b1b2b2…bnbn≤b12+b22+…+bn2,
记s=b12+b22+…+bn2.令ak=
(k=1,2…,n),bk s
则a1b1+a2b2+…+anbn=
(b12+b22+…+bn2)=1=b1+b2+…bn,1 s
于是由(1)得(
)b1(1 sb1
)b2…(1 sb2
)bn≤1,1 sbn
即b1b1b2b2…bnbn≤sb1+b2+…bn=s,
∴b1b1b2b2…bnbn≤b12+b22+…+bn2,
综合①②,(2)得证.