问题 解答题
设函数f(x)=lnx+
a
x
(a∈R),g(x)=x,F(x)=f(1+ex)-g(x)(x∈R)

(I)若函数f(x)的图象上任意一点P(x0,y0)处切线的斜率k≤
1
2
,求实数a的取值范围;
(Ⅱ)当a=0时,若x1,x2∈R,且x1≠x2,证明:F(
x1+x2
2
)<
F(x1)+F(x2)
2

(Ⅲ)当a=0时,若方程m[f(x)+g(x)]=
1
2
x2
(m>0)有唯一解,求m的值.
答案

(I)函数f(x)的定义域为(0,+∞),由题意k=f′(x0)=

x0-a
x20
1
2
在(0,+∞)上恒成立.,所以a≥(-
1
2
x20
+x0
)max,当x0=1时,

-

1
2
x20
+x0)max=
1
2
,∴a
1
2

(Ⅱ)当a=0时,F(x)=f(1+ex)-g(x)=ln(1+ex)-x,(x∈R),设x1,x2∈R,且x1<x2

F(x1)+F(x2)-2F(

x1+x2
2
)=ln(1+ex1)+ln(1+ex2)-x1-x2-2[ln(1+e
x1+x2
2
)-
x1+x2
2
]

=ln(1+ex1)(1+ex2)-ln(1+e

x1+x2
2
2

=ln(1+ex1+ex2+ex1+x2)-ln(1+2e

x1+x2
2
+ex1+x2),

∵ex1>0,ex2>0,且x1≠x2,∴+ex1+ex22

ex1+x2
=2e
x1+x2
2

1+ex1+ex2+ex1+x2)>1+2e

x1+x2
2
+ex1+x2),

ln(1+ex1+ex2+ex1+x2)>ln(1+2e

x1+x2
2
+ex1+x2),

F(x1)+F(x2)-2F(

x1+x2
2
)>0

F(

x1+x2
2
)<
F(x1)+F(x2)
2

(Ⅲ)当a=0时,方程m[f(x)+g(x)]=

1
2
x2(m>0)有唯一解,即为x2-2mlnx-2mx=0有唯一解,

设(x)=x2-2mlnx-2mx,则H′(x)=

2x2-2mx-2m
x
,令H′(x)=0,则x2-mx-m=0,m>0,x>0,∴x1=
m-
m2+4m
2
<0(舍去),x2=
m+
m2+4m
2

当x∈(0,x2)时,H′(x)<0,H(x)在(0,x2)上单调递减

当x∈(x2,+∞)时,H′(x)>0,H(x)在(x2,+∞)上单调递增.

当x=x2时,H(x)取最小值H(x2),则

H(x2)=0
H′(x2)=0
x22
-2mlnx2-2mx2=0
x22
-mx2-m=0
两式相减得2mlnx2+mx2-m=0,∵m>0,∴2lnx2+x2-1=0①,

设M(x)=2lnx+x-1,∵x>0,M(x)是增函数,∴M(x)=0至多有一解.∵M(1)=0,∴方程①的解为x2=1,

x2=

m+
m2+4m
2
=1,解得m=
1
2

单项选择题
单项选择题