问题
问答题
求证:5151-1能被7整除.
答案
参考答案:证明:∵5151-1=(49+2)51=1
=C051·4951+C151·4950·2+C251·4949·22+…+C5051·49·250+C5151·251-1
=49P+251-1(P∈N*).
又∵251-1=(23)17=1
=(7+1)17-1
=C017·717+C117·716+C217·715+…+C1617·7+C1717-1
=7Q(Q∈N*).