问题
填空题
f(x)=
|
答案
求导函数可得:f′(x)=x2-x=x(x-1)
令f′(x)>0,可得x<0或x>1;令f′(x)<0,可得0<x<1;
∵x∈[-1,1]
∴函数在[-1,0]上单调增,在[0,1]上单调减
∴x=0时,函数取得极大值,且为最大值
∴f(x)=
x3-1 3
x2在区间[-1,1]上的最大值是01 2
故答案为:0
f(x)=
|
求导函数可得:f′(x)=x2-x=x(x-1)
令f′(x)>0,可得x<0或x>1;令f′(x)<0,可得0<x<1;
∵x∈[-1,1]
∴函数在[-1,0]上单调增,在[0,1]上单调减
∴x=0时,函数取得极大值,且为最大值
∴f(x)=
x3-1 3
x2在区间[-1,1]上的最大值是01 2
故答案为:0