已知函数f(x)=sinx(x≥0),g(x)=ax(x≥0). (I)若f(x)≤g(x)恒成立,求实数a的取值范围; (II)当a取(I)中最小值时,求证:g(x)-f(x)≤
|
(Ⅰ) 由题意可得:令h(x)=f(x)-g(x)=sinx-ax(x≥0),
所以h'(x)=cosx-a.
若a≥1,h'(x)=cosx-a≤0,
所以h(x)=sinx-ax在区间[0,+∞)上单调递减,即h(x)≤h(0)=0,
所以sinx≤ax(x≥0)成立. (3分)
若a<1,存在x0∈(0,
),使得cosx0=a,π 2
所以x∈(0,x0),h'(x)=cosx-a>0,
所以h(x)=sinx-ax在区间(0,x0)上单调递增,
所以存在x使得h(x)>h(0)=0,即此时f(x)≤g(x)不恒成立,
所以a<1不符合题意舍去.
综上,a≥1. (5分)
(Ⅱ)由题意可得:a=1,所以g(x)=x(x≥0),
所以(x)-g(x)=sinx-x(x≥0),
所以原不等式等价于sinx-x-
x3≤0(x≥0),1 6
设H(x)=x-sinx-
x3 (x≥0),所以H′(x)=1-cosx-1 6
x2.1 2
令G(x)=1-cosx-
x2,所以G'(x)=sinx-x,1 2
所以G'(x)=sinx-x≤0(x≥0),
所以G(x)=1-cosx-
x2在(0,+∞)上单调递减,(8分)1 2
因此有:G(x)=1-cosx-
x2≤G(0)=0,1 2
即H′(x)=1-cosx-
x2≤0,1 2
所以H(x)=x-sinx-
x3 (x≥0)单调递减,(10分)1 6
所以H(x)=x-sinx-
x3≤H(0)=0,1 6
所以x-sinx-
x3≤0(x≥0)恒成立,即x-sinx≤1 6
x3(x≥0). (12分)1 6