问题 解答题
已知向量
OA
=(-1,2),
OB
=(1,3),
OC
=(3,m).
(1)若点A,B,C能构成三角形,求实数m应满足的条件;
(2)若点A,B,C构成直角三角形,且∠B=90°,求∠ACO的余弦值.
答案

(1)∵

OA
=(-1,2),
OB
=(1,3),
OC
=(3,m).

AB
=
OB
-
OA
=(2,1),
BC
=
OC
-
OB
=(2,m-3)

∵点A,B,C能构成三角形,

∴向量

AB
BC
不能共线,得2(m-3)≠1×2,所以m≠4,

即m满足的条件是m≠4

(2)∵

AB
=(2,1),
BC
=(2,m-3)且△ABC是以B为直角顶点的直角三角形

AB
BC
=2×2+1×(m-3)=0,解得m=-1

可得

OC
=(3,-1),

CA
=
OA
-
OC
=(-4,3),
CO
=-
OC
=(-3,1),

此时,cos∠ACO=

CA
CO
|
CA
|•|
CO
|
=
-4×(-3)+3×1
(-4)2+(-3)2
×
32+12
=
3
10
10

∴∠ACO的余弦值等于

3
10
10

填空题
问答题