问题
解答题
用半径为R的圆铁皮剪一个内接矩形,再将内接矩形卷成一个圆柱(无底、无盖),问使矩形边长为多少时,其体积最大?
答案
可设矩形的两边x,y,由几何关系x2+y2=4R2故有y=
.,4R2-x2
则体积V=π×(
)2×x 2π
=4R2-x2
×x 2 4π 4R2-x2
∴V′=
×(2x×1 4π
+4R2-x2
)x2×(-x) 4R2-x2
令V′=0得2x×
+4R2-x2
=0,整理得x2×(-x) 4R2-x2
=x,解得x=4R2-x2
R,此时另一边长为2
R2
即当x=
R时,体积取到最大值,最大值为V=2
×2R 2 4π
=4R2-2R2
R32 2
即当长与宽都是
R时,此圆柱体体积取到最大值2
R32 2