设f(n)=2n+1(n∈N),P={1,2,3,4,5},Q={3,4,5,6,7},记
|
={n∈N|f(n)∈P}={0,1,2};̂ P
={n∈N|f(n)∈Q}={1,2,3};̂ Q
∩CN̂ P
={0},̂ Q
∩CN̂ Q
={3}̂ P
∴(
∩CN̂ P
)∪(̂ Q
∩CN̂ Q
)={0,3}̂ P
故选A
设f(n)=2n+1(n∈N),P={1,2,3,4,5},Q={3,4,5,6,7},记
|
={n∈N|f(n)∈P}={0,1,2};̂ P
={n∈N|f(n)∈Q}={1,2,3};̂ Q
∩CN̂ P
={0},̂ Q
∩CN̂ Q
={3}̂ P
∴(
∩CN̂ P
)∪(̂ Q
∩CN̂ Q
)={0,3}̂ P
故选A