问题
解答题
从原点出发的某质点M,按向量
(1)求P1和P2的值; (2)求证:Pn+2-Pn+1=-
(3)求Pn的表达式. |
答案
(1)P1=
,P2=(2 3
)2+2 3
=1 3 7 9
(2)证明:M点到达点(0,n+2)有两种情况
①从点(0,n+1)按向量
=(0,1)移动a
②从点(0,n)按向量
=(0,2)移动b
∴Pn+2=
Pn+1+2 3
Pn1 3
∴Pn+2-Pn+1=-
(Pn+1-Pn)1 3
问题得证.
(3)数列{Pn+1-Pn}是以P2-P1为首项,-
为公比的等比数列1 3
Pn+1-Pn=(P2-P1)(-
)n-1=1 3
(-1 9
)n-1=(-1 3
)n+11 3
∴Pn-Pn-1=(-
)n1 3
又因为Pn-P1=(Pn-Pn-1)+(Pn-1-Pn-2)+…+(P2-P1)
=(-
)n+(-1 3
)n-1+…+(-1 3
)21 3
=
[1-(-1 12
)n-1]1 3
∴Pn=Pn-P1+P1
∴Pn=
×(-1 4
)n+1 3
.3 4