问题
选择题
已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是( )
A.-1<a<2
B.-3<a<6
C.a<-3或a>6
D.a<-1或a>2
答案
由于f(x)=x3+ax2+(a+6)x+1,
有f′(x)=3x2+2ax+(a+6).
若f(x)有极大值和极小值,
则△=4a2-12(a+6)>0,
从而有a>6或a<-3,
故选C.
已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是( )
A.-1<a<2
B.-3<a<6
C.a<-3或a>6
D.a<-1或a>2
由于f(x)=x3+ax2+(a+6)x+1,
有f′(x)=3x2+2ax+(a+6).
若f(x)有极大值和极小值,
则△=4a2-12(a+6)>0,
从而有a>6或a<-3,
故选C.