问题
填空题
|
答案
∵
+1 n+1
+…+1 n+2 1 2n
=
(1 n
+1 1+ 1 n
+…+1 1+ 2 n
)1 1+ n n
∴
(lim n→∞
+1 n+1
+…+1 n+2
)1 2n
=
[lim n→∞
(1 n
+1 1+ 1 n
+…+1 1+ 2 n
)]1 1+ n n
令x=
,则n→∞,1 n
→0,1 n
=1n n
则
[lim n→∞
(1 n
+1 1+ 1 n
+…+1 1+ 2 n
)]1 1+ n n
=∫ 10
dx=1 1+x
=ln2ln(1+x)| 10
故答案为:ln2