问题 填空题
lim
n→∞
(
1
n+1
+
1
n+2
+…+
1
2n
)
=______.
答案

1
n+1
+
1
n+2
+…+
1
2n

=

1
n
(
1
1+
1
n
+
1
1+
2
n
+…+
1
1+
n
n
)

lim
n→∞
1
n+1
+
1
n+2
+…+
1
2n

=

lim
n→∞
[
1
n
(
1
1+
1
n
+
1
1+
2
n
+…+
1
1+
n
n
)
]

令x=

1
n
,则n→∞,
1
n
→0,
n
n
=1

lim
n→∞
[
1
n
(
1
1+
1
n
+
1
1+
2
n
+…+
1
1+
n
n
)
]

=

10
1
1+x
dx=
ln(1+x)|10
=ln2

故答案为:ln2

选择题
问答题 简答题