我国第一颗绕月球探测卫星“嫦娥一号”于2007年10月24日18时05分在西昌卫星发射中心由“长征三号甲”运载火箭发射升空,经多次变轨于11月7日8时35分进入距离月球表面200公里,周期为127分钟的月圆轨道.已知月球的半径、万有引力常量,则可求出( )
A.月球质量
B.月球的密度
C.探测卫星的质量
D.月球表面的重力加速度
设该卫星的运行周期为T、质量为m,月球的半径为R、质量为M,
卫星距月球表面的高度为h,由题意知,卫星的轨道半径r=R+h,
“嫦娥一号”卫星绕月球做圆周运动,万有引力提供向心力,
由牛顿第二定律得:G
=m(Mm (R+h)2
)2(R+h),2π T
则月球质量M=
,卫星的质量m被约去,不能求卫星质量,故A正确,C错误;4π2(R+h)3 GT2
月球的密度ρ=
=M V
=4π2(R+h)3 GT2
πR34 3
,故B正确;3π(R+h)3 GT2R3
位于月球表面的物体m′受到的万有引力等于其重力,
则G
=m′g,则月球表面的重力加速度g=Mm′ R2
=GM R2
,故D正确;4π2(R+h)3 T2R2
故选ABD.