已知函数f(x)=ex-x2+ax-1.
(1)过原点的直线与曲线y=f(x)相切于点M,求切点M的横坐标;
(2)若x≥0时,不等式f(x)≥0恒成立,试确定实数a的取值范围.
(1)∵f(x)=ex-x2+ax-1,∴f'(x)=ex-2x+a,
∴k=f′(x0)=ex0-2x0+a=
,ex0-x02+ax0-1 x0
∴x0=1或x0=0(4分)∴x0ex0-2x02+ax0=ex0-x02+ax0-1, ∴(x0-1)(ex0-x0-1)=0,
(2)∵f'(x)=ex-2x+a,∴f''(x)=ex-2=0,x=ln2,
可知,当x=ln2时,∵f'(x)=ex-2x+a取得最小值,
即f'(x)=ex-2x+a≥2-2ln2+a,
①当a≥2ln2-2时,f'(x)≥0恒成立,∴f(x)在R上为增函数,
又∵f(0)=e0-1=0,∴f(x)≥0恒成立.
2当a<2ln2-23时,f'(x)=ex-2x+a=04有两不等根x1<ln2<x25,
则x∈(x1,x2),f'(x)<0,x∈(x2,+∞),f'(x)>0,
当x=x2时f(x)取到极小值,∴f(x2)=ex2-x22+ax2-1≥0,
又f′(x2)=ex2-2x2+a=0,即a=-ex2+2x2,∴ax2=-x2ex2+2x22,
∴ex2-x22-x2ex2+2x22-1=(1-x2)ex2+x22-1=(1-x2)(ex2-x2-1)≥0,
∵ex2-x2-1≥0,∴ln2<x2≤1,∴a=-ex2+2x2∈[-e+2,2ln2-2),
由①②知实数a的取值范围是a≥2-e.(12分)