问题 填空题
已知平面向量
OA
OB
OC
满足:|
OA
|=|
OB
|=|
OC
|=1,
OA
OB
=0
,若
OC
=x
OA
+y
OB
(x,y∈R),则x+y的最大值是______.
答案

|

OA
|=|
OB
|=|
OC
|=1,
OA
OB
=0,

OC
=x
OA
+y
OB
两边平方得

OC
2=x2
OA
2
+y2
OB
2
+2xy
OA
OB

所以 x2+y2=1,

由于 (x+y)2=x2+y2+2xy≤2(x2+y2)=2,

因此 x+y≤

2

即 x+y 最大值为

2

故答案为:

2

填空题
单项选择题