问题
解答题
已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk=2550. (Ⅰ)求a及k的值; (Ⅱ)求
|
答案
(Ⅰ)设该等差数列为{an},
则a1=a,a2=4,a3=3a,Sk=2550.
由已知有a+3a=2×4,
解得首项a1=a=2,
公差d=a2-a1=2.
代入公式Sk=k•a1+
•dk(k-1) 2
得k•2+
•2=2550k(k-1) 2
∴k2+k-2550=0
解得k=50,k=-51(舍去)
∴a=2,k=50;
(Ⅱ)由Sn=n•a1+
•dn(n-1) 2
得Sn=n(n+1),
+1 S1
++1 S2 1 Sn
=
+1 1×2
++1 2×3 1 n(n+1)
=(
-1 1
)+(1 2
-1 2
)++(1 3
-1 n
)1 n+1
=1-1 n+1
∴
(lim n→∞
+1 S1
++1 S2
)=1 Sn
(1-lim n→∞
)=1.1 n+1