问题
填空题
曲线y=-x3+3x2在点(1,2)处的切线方程为______.
答案
∵曲线y=-x3+3x2,
∴y′=-3x2+6x,
∴切线方程的斜率为:k=y′|x=1=-3+6=3,
又因为曲线y=-x3+3x2过点(1,2)
∴切线方程为:y-2=3(x-1),
即y=3x-1,
故答案为:y=3x-1.
曲线y=-x3+3x2在点(1,2)处的切线方程为______.
∵曲线y=-x3+3x2,
∴y′=-3x2+6x,
∴切线方程的斜率为:k=y′|x=1=-3+6=3,
又因为曲线y=-x3+3x2过点(1,2)
∴切线方程为:y-2=3(x-1),
即y=3x-1,
故答案为:y=3x-1.