问题
选择题
设正数a,b满足
|
答案
∵
(x2+ax-b)=4⇒4+2a-b=4⇒2a=b,lim x→2
∴
=a b
.1 2
∴lim n→∞
=an+1+abn-1 an-1+2bn lim n→∞
=a(
)n+a b a b
(1 a
)n+2a b lim n→∞
=a(
)n+1 2 1 2
(1 a
)n+21 2
.1 4
故选B.
设正数a,b满足
|
∵
(x2+ax-b)=4⇒4+2a-b=4⇒2a=b,lim x→2
∴
=a b
.1 2
∴lim n→∞
=an+1+abn-1 an-1+2bn lim n→∞
=a(
)n+a b a b
(1 a
)n+2a b lim n→∞
=a(
)n+1 2 1 2
(1 a
)n+21 2
.1 4
故选B.