问题
填空题
已知函数f(x)=
|
答案
∵f(x)=
,cosx ex
∴f′(x)=
=-exsinx - excosx (ex)2 -sinx-cosx ex
∴f′(0)=-1,f(0)=1
即函数f(x)图象在点(0,1)处的切线斜率为-1
∴图象在点(0,f(0))处的切线方程为x+y-1=0
故答案为:x+y-1=0
已知函数f(x)=
|
∵f(x)=
,cosx ex
∴f′(x)=
=-exsinx - excosx (ex)2 -sinx-cosx ex
∴f′(0)=-1,f(0)=1
即函数f(x)图象在点(0,1)处的切线斜率为-1
∴图象在点(0,f(0))处的切线方程为x+y-1=0
故答案为:x+y-1=0