问题 问答题

如图所示,在y轴右侧平面内存在方向向内的匀强磁场,磁感应强度B=0、5T,坐标原点O有一放射源,可以向y轴右侧面内沿各个方向放射比荷

q
m
=4×106C/Kg的正离子,这些正离子的速率分别在零到vmax=2×106m/s的范围内,不计离子之间的相互作用.

(1)求离子打到y轴上的范围

(2)若在某时刻沿+x方向放射各种速率的离子,求经过t=

3
×10-7s时这些离子所在位置构成的曲线方程.

(3)若从某时刻开始向y轴右侧各个方向放射各种速率的离子,求经过t=

3
×10-7s时已进入磁场的离子可能出现的区域面积.

答案

(1)洛伦兹力提供向心力,则有:Bqvm=m

v2m
R

解得:R=1m  

则离子打到y轴上的范围为0-2m

(2)由周期公式可得,T=

2πm
qB
=π×10-6s

设这些离子经过t=

5
3
π×10-7s时,其轨迹所对应的圆心角为 θ.    

 θ=

2πt
T
=
π
3
令t时刻离子所在位置坐标为(x,y),

则x=rsinθ;  

y=r(1-cosθ)

y=

3
3
x(0≤x≤
3
2
)

(3)t时刻已进入磁场的区域,其面积

S=

5
12
πR2+
1
6
πR2-
1
2
3
2
R=(
7
12
π-
3
4
)m2

答:(1)求离子打到y轴上的范围为0-2m;

(2)若在某时刻沿+x方向放射各种速率的离子,则经过t=

3
×10-7s时这些离子所在位置构成的曲线方程y=
3
3
x
(0≤x≤
3
2
)

(3)若从某时刻开始向y轴右侧各个方向放射各种速率的离子,则经过t=

3
×10-7s时已进入磁场的离子可能出现的区域面积为(
7
12
π-
3
4
)m2

单项选择题
多项选择题