问题
填空题
已知a=
|
答案
∵
+1 n2
+…+2 n2
=n n2
=n(n+1) 2 n2
,∴a=n+1 2n lim n→∞
=n+1 2n lim n→∞
=1+ 1 n 2
;1 2
∵1+
+1 3
+…+1 9
=1 3n-1
,∴b=1- 1 3n 1- 1 3 lim n→∞
=1- 1 3n 1- 1 3
;3 2
则
=an+bn an+1+bn+1
=
+(1 2n
)n3 2
+(1 2n+1
)n+13 2
,
+11 3n
×1 2
+1 3n 3 2
所以c=lim n→∞
=
+11 3n
×1 2
+1 3n 3 2
,2 3
故答案为:
,1 2
;3 2
.2 3