问题
解答题
设z是虚数,ω=z+
(1)求|z|的值及z的实部的取值范围; (2)设u=
|
答案
设z=x+yi(x,y∈R,y≠0)
(1)ω=z+
=(x+1 z
)+(y-x x2+y2
)iy x2+y2
∵-1<ω<2,∴y-
=0,y x2+y2
又∵y≠0,∴x2+y2=1即|z|=1
∵-1<x+
<2⇒-1<2x<2,x x2+y2
∴-
<x<11 2
即z的实部的取值范围是(-
,1)1 2
(2)u=
=1-z 1+z
=(1-x-yi)(1+x-yi) (1+x)2+y2 (1-x2-y2)-2yi (1+x)2+y2
∵x2+y2=1,∴u=
i-2y (1+x)2+y2
又∵y≠0,
∴u是纯虚数.