如图所示,火箭栽着宇宙探测器飞向某行星,火箭内平台上还放有测试仪器.火箭从地面起飞时,以加速度竖直向上做匀加速直线运动(g0为地面附近的重力加速度),已知地球半径为R.
(1)到某一高度时,测试仪器对平台的压力是刚起飞时压力的,求此时火箭离地面的高度h.
(2)探测器与箭体分离后,进入行星表面附近的预定轨道,进行一系列科学实验和测量,若测得探测器环绕该行星运动的周期为T0,试问:该行星的平均密度为多少?(假定行星为球体,且已知万有引力恒量为G)
(1)火箭刚起飞时,以测试仪为研究对象,受地球引力mg0、平台的支持力N1,有:
N1-mg0=ma=m×
N1=mg0
根据牛顿第三定律,起飞时测试仪器对平台的压力大小为N′=mg0.
设火箭离地高为h时,平台对测试仪器的支持力为N2,则有:N2-=m×,其中G为万有引力恒量,M为地球质量.
在地面附近,有:G=mg0
则:N2=()2mg0+=N1=×mg0
于是得到:h=R
(2)设行星质量为M,行星平均密度为ρ,=mR
又有:M=πR3ρ
得:ρ=.
答(1)到某一高度时,测试仪器对平台的压力是刚起飞时压力的,此时火箭离地面的高度h为R.
(2)探测器与箭体分离后,进入行星表面附近的预定轨道,进行一系列科学实验和测量,若测得探测器环绕该行星运动的周期为T0,则该行星的平均密度为.