问题
解答题
先观察下列等式,再回答问题
(1)根据上面三个等式提供的信息,请猜想
(2)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式,并加以验证. |
答案
(1)
=11+
+1 92 1 102
.1 90
故答案为1
;1 90
(2)
=1+1+
+1 n2 1 (n+1)2
(n为正整数).验证如下:1 n(n+1)
∵
=1+
+1 n2 1 (n+1)2
=1+ (n+1)2+n2 n2(n+1)2
=1+ 2n2+2n+1 n2(n+1)2
=1+
+2n(n+1) n2(n+1)2 1 n2(n+1)2
=1+
+2 n(n+1) 1 n2(n+1)2
=1+[1+
]21 n(n+1) 1 n(n+1)
∴
=1+1+
+1 n2 1 (n+1)2
.1 n(n+1)