问题 填空题

(1)月球绕地球公转周期为T,月地距离为r,引力常量为G,地球质量为M,则r3与T2的比为k,k=______.

(2)一探月卫星在地月转移轨道上运行,计划通过地心和月心连线上特别位置,卫星在此处所受地球引力与月球引力的大小恰好相等.已知地球与月球的质量之比约为81:1,则该处到地心与到月心的距离之比约为______.

答案

(1)月球绕地球公转周期为T,月地距离为r,引力常量为G,地球质量为M,根据万有引力提供向心力,有:

G

mM
r2
=mr(
T
)
2

解得:

r3
T2
=
GM
4π2

故k=

GM
4π2

(2)卫星所受地球引力与月球引力的大小恰好相等,根据万有引力定律,有:

G

m0M
r21
=G
m0m
r22

解得:

r2
r1
=
M
m
=9

故答案为:(1)

GM
4π2
;(2)9:1.

单项选择题
单项选择题