问题
填空题
已知∠AOB=30°,点P在∠AOB内部且OP=4,P1与P关于OB对称,P2与P关于OA对称,则P1P2=______.
答案
如图,连接OP,
∵P1与P关于OB对称,P2与P关于OA对称,
∴OP1=OP,OP=OP2,∠BOP=∠BOP1,∠AOP=∠AOP2,
∴OP1=OP2,
∠P1OP2=∠BOP+∠BOP1+∠AOP+∠AOP2=2∠BOP+2∠AOP=2∠AOB,
∵∠AOB=30°,
∴∠P1OP2=60°,
∴△P1OP2是等边三角形.
∵OP=4,
∴P1P2=4,
故答案为:4.