问题
解答题
已知x=2是函数f(x)=(x2+ax-2a-3)ex的一个极值点 (I)求实数a的值; (II)求函数f(x)在x∈[
|
答案
(I)由f(x)=(x2+ax-2a-3)ex可得
∴f′(x)=(2x+a)ex+(x2+ax-2a-3)ex=[x2+(2+a)x-a-3]ex
∵x=2是函数f(x)的一个极值点,
∴f′(2)=0
∴(a+5)e2=0,
解得a=-5;
(II)由(I)知,f′(x)=(x-2)(x-1)ex,
∴函数在x=1或2处取极值
∵f(1)=3e,f(2)=e2,f(3)=e3,f(
)=3 2
e7 4 3 2
∴函数f(x)在x∈[
,3]的最小值为f(2)=e2;最大值为e3.3 2