如下图,在xOy坐标系的第一象限内有互相正交的匀强电场E与匀强磁场B,E的大小为1.0×103V/m,方向未知,B的大小为1.0T,方向垂直纸面向里;第二象限的某个圆形区域内,有方向垂直纸面向里的匀强磁场B′。一质量m=1×10-14kg、电荷量q=1×10-10C的带正电微粒以某一速度v沿与x轴负方向60°角从A点沿直线进入第一象限运动,经B点即进入处于第二象限内的磁场B′区域,一段时间后,微粒经过x轴上的C点并与x轴负方向成60°角的方向飞出。已知A点的坐标为(10,0),C点的坐标为(-30,0),不计粒子重力,g取10m/s2。
小题1:请分析判断匀强电场E的方向并求出微粒的运动速度v;
小题2:匀强磁场B′的大小为多大?
小题3:B′磁场区域的最小面积为多少?
小题1:电场E的方向与x轴正方向成30°角斜向右上方 103m/s
小题2:T
小题3:3.1×10-2m2
(1)由于重力忽略不计,微粒在第一象限内仅受电场力和洛伦兹力,且微粒做直线运动,速度的变化会引起洛仑兹力的变化,所以微粒必做匀速直线运动。这样,电场力和洛仑兹力大小相等,方向相反,电场E的方向与微粒运动的方向垂直,即与x轴正方向成30°角斜向右上方。
由力的平衡条件有Eq=Bqv(1分)
得v=m/s =103m/s(1分)
(2)微粒从B点进入第二象限的磁场B'中,画出微粒的运动轨迹如右图。
粒子在第二象限内做圆周运动的半径为R,由几何关系可知
R=cm=
cm。(1分)
微粒做圆周运动的向心力由洛伦兹力提供,即qvB′=m(1分)
B′=(1分)代入数据解得B′=
T(1分)
(3)由图可知,B、D点应分别是微粒进入磁场和离开磁场的点,磁场B′的最小区域应该分布在以BD为直径的圆内。由几何关系易得BD=20cm,磁场圆的最小半径r=10cm。(1分)
所以,所求磁场的最小面积为S=πr2=0.01π=3.1×10-2m2(1分)