问题 解答题
已知曲线 y=
1
3
x3+2x-
2
3

(1)求曲线在点P(2,6)处的切线方程;
(2)求曲线过点P(2,6)的切线方程.
答案

(1)由题意得,y′=x2+2,

∴在点P(2,6)处的切线的斜率k=y′|x=2=6,

∴在点P(2,6)处的切线方程为:y-6=6(x-2)

即 6x-y-6=0,

(2)设曲线y=

1
3
x3+2x-
2
3
与过点P(2,6)的切线相切于点A(x0
1
3
x30
+2x0-
2
3
)

则切线的斜率k=y|x=x0=

x20
+2,

∴切线方程为y-(

1
3
x30
+2x0-
2
3
)=(
x20
+2)(x-x0),

y=(

x20
+2)x-
2
3
x30
-
2
3
  ①,

∵点P(2,6)在切线上,∴6=2(

x20
+2)-
2
3
x30
-
2
3

x30
-3
x20
+4=0,∴
x30
+
x20
-4
x20
+4=0

x20
(x0+1)-4(x0+1)(x0-1)=0,化简得(x0+1)(x0-2)2=0

解得x0=-1或x0=2,代入①得,y=3x或y=6x-6,

故所求的切线方程为3x-y=0,6x-y-6=0.

单项选择题
问答题 简答题