问题
填空题
设曲线y=eax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=______.
答案
∵y=eax∴y′=aeax
∴曲线y=eax在点(0,1)处的切线方程是y-1=a(x-0),即ax-y+1=0
∵直线ax-y+1=0与直线x+2y+1=0垂直
∴-
a=-1,即a=2.1 2
故答案为:2
设曲线y=eax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=______.
∵y=eax∴y′=aeax
∴曲线y=eax在点(0,1)处的切线方程是y-1=a(x-0),即ax-y+1=0
∵直线ax-y+1=0与直线x+2y+1=0垂直
∴-
a=-1,即a=2.1 2
故答案为:2