问题
选择题
曲线y=x3-2x+1在点(1,0)处的切线方程为( )
A.y=x-1
B.y=-x+1
C.y=2x-2
D.y=-2x+2
答案
验证知,点(1,0)在曲线上
∵y=x3-2x+1,
y′=3x2-2,所以k=y′|x-1=1,得切线的斜率为1,所以k=1;
所以曲线y=f(x)在点(1,0)处的切线方程为:
y-0=1×(x-1),即y=x-1.
故选A.
曲线y=x3-2x+1在点(1,0)处的切线方程为( )
A.y=x-1
B.y=-x+1
C.y=2x-2
D.y=-2x+2
验证知,点(1,0)在曲线上
∵y=x3-2x+1,
y′=3x2-2,所以k=y′|x-1=1,得切线的斜率为1,所以k=1;
所以曲线y=f(x)在点(1,0)处的切线方程为:
y-0=1×(x-1),即y=x-1.
故选A.