问题 选择题
若数列{an}满足:a1=
1
3
,且对任意正整数m,n都有am+n=am•an,则
lim
n→+∞
(a1+a2+…+an)=(  )
A.
1
2
B.
2
3
C.
3
2
D.2
答案

数列{an}满足:a1=

1
3
,且对任意正整数m,n都有am+n=am•an

∴a2=a1+1=a1•a1=

1
9
,an+1=an•a1=
1
3
an

∴数列{an}是首项为

1
3
,公比为
1
3
的等比数列.

lim
n→+∞
(a1+a2++an)=
a1
1-q
=
1
2

故选A.

单项选择题
填空题