问题
填空题
若虚数z满足z+
|
答案
设Z=a+bi(a,b∈R)
由Z为虚数,故b≠0
则z+
=a+bi+1 z
,a-bi a2+b2
若z+
∈R,则b-1 z
=0b a2+b2
则a2+b2=1(b≠0)
又∵|z-2i|=|a+(b-2)i|=
(b≠0)a2+(b-2)2
故|z-2i|∈[1,
)∪(5
,3]5
故答案为:[1,
)∪(5
,3]5
若虚数z满足z+
|
设Z=a+bi(a,b∈R)
由Z为虚数,故b≠0
则z+
=a+bi+1 z
,a-bi a2+b2
若z+
∈R,则b-1 z
=0b a2+b2
则a2+b2=1(b≠0)
又∵|z-2i|=|a+(b-2)i|=
(b≠0)a2+(b-2)2
故|z-2i|∈[1,
)∪(5
,3]5
故答案为:[1,
)∪(5
,3]5