问题
选择题
曲线f(x)=(x-2)(x3-1)在点(1,0)处的切线方程为( )
A.3x+y-3=0
B.3x-y-1=0
C.x-y+1=0
D.x+y-1=0
答案
∵f(x)=(x-2)(x3-1)=x4-2x3-x+2,
∴f′(x)=4x3-6x2-1,
f′(x)|x=1=-3,
而切点的坐标为(1,0)
∴曲线f(x)=(x-2)(x3-1)在点(1,0)处的切线方程为:3x+y-3=0.
故选A.