已知函数f(x)=x3-ax2,其中a为实常数.
(1)设当x∈(0,1)时,函数y=f(x)图象上任一点P处的切线的斜线率为k,若k≥-1,求a的取值范围;
(2)当x∈[-1,1]时,求函数y=f(x)+a(x2-3x)的最大值.
(1)∴k=f'(x)=3x2-2ax,x∈(0,1).
由k≥-1,得3x2-2ax+1≥0,即a≤=(3x+)恒成立
∴a≤(3x+)min
∵当x∈(0,1)时,3x+≥2=2,当且仅当x时取等号.
∴(3x+)min=.故a的取值范围是(-∞,].
(2)设g(x)=f(x)+a(x2-3x)=x3-3ax,x∈[-1,1]则
g′(x)=3x2-3a=3(x2-a).
①当a≥1时,∴g′(x)≤0.从而g(x)在[-1,1]上是减函数.
∴g(x)的最大值为g(-1)=3a-1.
②当0<a<1时,g′(x)=3(x+)(x-).
由g′(x)>0得,x>或x<-:由g′(x)<0得,-<x<.
∴g(x)在[-1,-],[,1]上增函数,在[-,]上减函数.
∴g(x)的极大值为g(-)=2a.
由g(-)-g(1)=2a+3a-1=(+1)2•(2-1)知
当2-1<0,即0≤a<时,g(-)<g(1)
∴g(x)max=g(1)=1-3a.
当2-1≥0,即<a<1时,g(-)≥g(1)
∴g(x)max=g(-)=2a.
③当a≤0时,g′(x)≥0,从而g(x)在[-1,1]上是增函数.
∴g(x)max=g(1)=1-3a
综上分析,g(x)max= | 3a-1,(a≥1) | 2a,(≤a<1) | 1-3a,(a<) |
| |