问题
解答题
设函数f(x)=2-3ex的图象与x轴相交于点P,求曲线在点P处的切线的方程,并说明你的解答中的主要步骤(三步).
答案
∵点P在X轴上,∴设P(x0,0),(1分)
则切线斜率为f'(x0)(2分),
∵f(x)=2-3ex与X轴交于点P,则有0=2-3ex0,(3分)
ex0=
,x0=ln2 3
,(5分)2 3
∵f'(x)=-3ex,(7分)
切线斜率为f′(x0)=-3eln
=-2,(8分)2 3
∴切线方程为y-0=f′(x0)(x-x0)=-2(x-ln
),即y=-2x+2ln2 3
.(10分)2 3
第一步:求出点P坐标;
第二步:求出函数在x=x0处的导数,即切线的斜率;
第三步:求出切线方程.(12分,如果少了一步,或不够简明,扣1分)