问题
解答题
已知实数a满足1<a≤2,设函数f (x)=
(Ⅰ) 当a=2时,求f (x)的极小值; (Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,求证:g(x)的极大值小于等于10. |
答案
(Ⅰ)当a=2时,f′(x)=x2-3x+2=(x-1)(x-2).
列表如下:
x | (-∞,1) | 1 | (1,2) | 2 | (2,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
2 |
3 |
(Ⅱ)f′(x)=x2-(a+1)x+a=(x-1)(x-a).
由于a>1,
所以f(x)的极小值点x=a,则g(x)的极小值点也为x=a、
而g′(x)=12x2+6bx-6(b+2)=6(x-1)(2x+b+2),
所以a=-
,b+2 2
即b=-2(a+1).
又因为1<a≤2,
所以g(x)极大值=g(1)
=4+3b-6(b+2)
=-3b-8
=6a-2≤10.
故g(x)的极大值小于等于10.