问题
填空题
函数y=cos2x在点(
|
答案
∵y=cos2x,
∴y′=-2sin2x,
∴曲线y=cos2x在点(
,0)处的切线的斜率为:k=y′π 4
=-2,| x= π 4
∴曲线y=cos2x在点(
,0)处的切线的方程为:y-0=-2(x-π 4
)π 4
即4x+2y-π=0,
故答案为:4x+2y-π=0.
函数y=cos2x在点(
|
∵y=cos2x,
∴y′=-2sin2x,
∴曲线y=cos2x在点(
,0)处的切线的斜率为:k=y′π 4
=-2,| x= π 4
∴曲线y=cos2x在点(
,0)处的切线的方程为:y-0=-2(x-π 4
)π 4
即4x+2y-π=0,
故答案为:4x+2y-π=0.