问题 填空题
已知△AOB,点P在直线AB上,且满足
OP
=t
OB
+2t
PA
,t∈R
,则
|
PA
|
|
PB
|
=______.
答案

OP
=t
OB
+2t
PA
,t∈R,且
PA
=
OA
-
OP

∴(1+2t)

OP
=2t
OA
+t
OB
,即
OP
=
2t
1+2t
OA
+
t
1+2t
OB
,①

∵点P在直线AB上,∴设

AP
=m
PB
,即|
AP
|:|
PB
|=m,

根据定比分点公式得,t=

1
1+m
,∵
OP
=t
OA
+(1-t)
OB
,②,

由①②和向量相等得,

2t
1+2t
=t
t
1+2t
=(1-t)
,解得t=
1
2
2
3

t=

1
1+m
,∴m=1或
1
2

|
PA
|
|
PB
|
=1或
1
2

故答案为:1或

1
2

单项选择题
单项选择题