问题
填空题
已知△AOB,点P在直线AB上,且满足
|
答案
∵
=tOP
+2tOB
,t∈R,且PA
=PA
-OA
,OP
∴(1+2t)
=2tOP
+tOA
,即OB
=OP 2t 1+2t
+OA t 1+2t
,①OB
∵点P在直线AB上,∴设
=mAP
,即|PB
|:|AP
|=m,PB
根据定比分点公式得,t=
,∵1 1+m
=tOP
+(1-t)OA
,②,OB
由①②和向量相等得,
,解得t=
=t2t 1+2t
=(1-t)t 1+2t
或1 2
,2 3
∵t=
,∴m=1或1 1+m
,1 2
∴
=1或|
|PA |
|PB
.1 2
故答案为:1或
.1 2