问题
填空题
曲线y=x3-2x2-4x+2在点(1,-3)处的切线方程是 ______
答案
易判断点(1,-3)在曲线y=x3-2x2-4x+2上,
故切线的斜率k=y′|x=1=(3x2-4x-4)|x=1=-5,
∴切线方程为y+3=-5(x-1),即5x+y-2=0
故答案为:5x+y-2=0
曲线y=x3-2x2-4x+2在点(1,-3)处的切线方程是 ______
易判断点(1,-3)在曲线y=x3-2x2-4x+2上,
故切线的斜率k=y′|x=1=(3x2-4x-4)|x=1=-5,
∴切线方程为y+3=-5(x-1),即5x+y-2=0
故答案为:5x+y-2=0