问题
解答题
已知函数y=f(x)=
(1)求函数y=f(x)的图象在x=
(2)求y=f(x)的最大值; (3)设实数a>0,求函数F(x)=af(x)在[a,2a]上的最小值. |
答案
(1)∵f(x)定义域为(0,+∞),∴f′(x)=1-lnx x2
∵f(
)=-e,又∵k=f′(1 e
)=2e2,1 e
∴函数y=f(x)的在x=处的切线方程为:
y+e=2e2(x-
),即y=2e2x-3e.1 e
(2)令f′(x)=0得x=e.
∵当x∈(0,e)时,f′(x)>0,f(x)在(0,e)上为增函数,
当x∈(e,+∞)时,f′(x)<0,则在(e,+∞)上为减函数,
∴fmax(x)=f(e)=
.1 e
(3)∵a>0,由(2)知:
F(x)在(0,e)上单调递增,在(e,+∞)上单调递减.
∴F(x)在[a,2a]上的最小值f(x)min=min{F(a),F(2a)},
∵F(a)-F(2a)=
ln1 2
,a 2
∴当0<a≤2时,F(a)-F(2a)≤0,fmin(x)=F(a)=lna.
当a>2时,F(a)-F(2a)>0,f(x)min=f(2a)=
ln2a.1 2