问题
解答题
(1)求[(1+2i)•i100+(
(2)设z的共轭复数为
|
答案
(1)原式=[(1+2i)+(-i)5]2-i10
=(1+i)2-(-1)=2i+1.
(2)设z=x+yi(x,y∈R),则
=x-yi,. z
则(x+yi)+(x-yi)=4,即2x=4,解得x=2,(x+yi)(x-yi)=8,即x2+y2=8,
所以4+y2=8,解得y=±2,
所以z=2±2i,
当z=2+i时,
=. z z
=2-i 2+i
=(2-i)2 (2+i)(2-i)
;3-4i 5
当z=2-i时,
=. z z
=2+i 2-i
=(2+i)2 (2-i)(2+i)
;3+2i 5