问题 选择题

下列命题正确的是(   )

A.共线,共线,则c也共线

B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点

C.向量不共线,则都是非零向量

D.有相同起点的两个非零向量不平行

答案

答案:C

由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若不都是非零向量,即至少有一个是零向量,而由零向量与任一向量都共线,可有共线,不符合已知条件,所以有都是非零向量,所以应选C.

单项选择题 A2型题
单项选择题