问题
解答题
已知数列{
(I)用λ表示bn; (II)若
(III)在(II)条件下,求数列{an}的前n项和. |
答案
(I)因为数列{
-(an λn
)n}是等差数列,公差为2所以3 λ
-an+1 λn+1
=3n+1 λn+1
-an λn
+2⇒an+1=λ•an+3n+1+2λn+1-λ•3n3n λn
∴bn=3n+1+2λn+1-λ•3n=2λn+1+3n(3-λ)
(II)又lim n→∞
=bn+1 bn lim n→∞
当λ=3时,2λn+2+3n+1(3-λ) 2λn+1+3n(3-λ) lim n→∞
═λ=3,bn+1 bn
与已知矛盾,
∴λ≠3
当λ>3时,lim n→∞
=bn+1 bn lim n→∞
=λ=42λ+(3-λ)(
)n+13 λ 2+
(3-λ λ
)n3 λ
∴λ=4
(III)由已知当λ=4时,
=an 4n
=3n 4n
+2(n-1)=2n⇒an=2n•4n+3n11-3 4
令An=2×4+4×42+6×43++2n×4n=
+8 9
×4n+1Bn=3+32+33++3n=6n-2 9
-3n+1 2 3 2
∴数列{an}的前n项和Sn=An+Bn=
+8 9
×4n+1+6n-2 9
-3n+1 2
=-3 2
+11 18
+3n+1 2
×4n+16n-2 9