问题 解答题
已知数列{
an
λn
-(
3
λ
)n}
是等差数列,公差为2,a1,=11,an+1=λan+bn
(I)用λ表示bn
(II)若
lim
n→∞
bn+1
bn
=4,且κ≥3,求λ
的值;
(III)在(II)条件下,求数列{an}的前n项和.
答案

(I)因为数列{

an
λn
-(
3
λ
)n}是等差数列,公差为2所以
an+1
λn+1
-
3n+1
λn+1
=
an
λn
-
3n
λn
+2⇒an+1=λ•an+3n+1+2λn+1-λ•3n

∴bn=3n+1+2λn+1-λ•3n=2λn+1+3n(3-λ)

(II)又

lim
n→∞
bn+1
bn
=
lim
n→∞
2λn+2+3n+1(3-λ)
2λn+1+3n(3-λ)
当λ=3时,
lim
n→∞
bn+1
bn
═λ=3

与已知矛盾,

∴λ≠3

当λ>3时,

lim
n→∞
bn+1
bn
=
lim
n→∞
2λ+(3-λ)(
3
λ
)
n+1
2+
3-λ
λ
(
3
λ
)
n
=λ=4

∴λ=4

(III)由已知当λ=4时,

an
4n
=
3n
4n
=
11-3
4
+2(n-1)=2n⇒an=2n•4n+3n

An=2×4+4×42+6×43++2n×4n=

8
9
+
6n-2
9
×4n+1Bn=3+32+33++3n=
3n+1
2
-
3
2

∴数列{an}的前n项和Sn=An+Bn=

8
9
+
6n-2
9
×4n+1+
3n+1
2
-
3
2
=-
11
18
+
3n+1
2
+
6n-2
9
×4n+1

选择题
单项选择题