问题
填空题
已知{an}是公差不为零的等差数列,如果sn是{an}的前n项的和,那么
|
答案
设an=a1+(n-1)d,sn=na1+
d,代入得n(n-1) 2 lim n→∞
=nan sn lim n→∞
=na1+n(n-1)d na1+
dn(n-1) 2 lim n→∞
=2
+da1 n-1
+a1 n-1 d 2
故答案为2
已知{an}是公差不为零的等差数列,如果sn是{an}的前n项的和,那么
|
设an=a1+(n-1)d,sn=na1+
d,代入得n(n-1) 2 lim n→∞
=nan sn lim n→∞
=na1+n(n-1)d na1+
dn(n-1) 2 lim n→∞
=2
+da1 n-1
+a1 n-1 d 2
故答案为2