问题
选择题
若多项式(1+x)m=a0+a1x+a2x2+…+amxm满足:a1+2a2+3a3+…+mam=80,则
|
答案
设y=(1+x)m=a0+a1x+a2x2+…+amxm,
y′=m(1+x)m-1=a1+2a2x+3a3x2+…+mamxm-1,
令x=1,得2m-1m=a1+2a2+3a3+…+mam=80.
解得m=5.∴a4=C54=5.
∴
(lim n→∞
+1 a4
+1 a 24
+…+1 a 34
)=1 a n4
(lim n→∞
+1 5
+…+1 52
)1 5n
=
=1 5 1- 1 5
.1 4
故选B.