问题 解答题

(本小题满分12分)

在直三棱柱ABC—A1B1C1中,∠ABC=90°,BC=CC1,M、N分别为BB1

A1C1的中点.

(1)求证:CB1⊥平面ABC1

(2)求证:MN//平面ABC1.

答案

详见解析

题目分析:(1)根据直三棱柱的性质,利用面面垂直性质定理证出平面,得出.正方形中,对角线,由线面垂直的判定定理可证出平面;(2)取的中点,连,利用三角形中位线定理和平行四边形的性质,证出,从而得到是平行四边形,可得,结合线面平行判定定理即可证出

解:(1)在直三棱柱ABC—A1B1C1中,

侧面BB1C1C⊥底面ABC,且侧面BB1C1C∩底面ABC=BC,

∵∠ABC=90°,即AB⊥BC,

∴AB⊥平面BB1C­1                 2分

∵CB1平面BB1C1C,∴AB⊥CB1.        4分

,∴是正方形,

,∴CB1⊥平面ABC1.       6分

(2)取AC1的中点F,连BF、NF.       7分

在△AA1C1中,N、F是中点,∴NFAA1,又∵BMAA1,∴EFBM,   8分

故四边形BMNF是平行四边形,∴MN//BF,    10分

而EF面ABC1,MN平面ABC1,∴MN//面ABC1 12分

单项选择题
单项选择题